4 research outputs found

    The ARIEL Instrument Control Unit design for the M4 Mission Selection Review of the ESA's Cosmic Vision Program

    Get PDF
    The Atmospheric Remote-sensing Infrared Exoplanet Large-survey mission (ARIEL) is one of the three present candidates for the ESA M4 (the fourth medium mission) launch opportunity. The proposed Payload will perform a large unbiased spectroscopic survey from space concerning the nature of exoplanets atmospheres and their interiors to determine the key factors affecting the formation and evolution of planetary systems. ARIEL will observe a large number (>500) of warm and hot transiting gas giants, Neptunes and super-Earths around a wide range of host star types, targeting planets hotter than 600 K to take advantage of their well-mixed atmospheres. It will exploit primary and secondary transits spectroscopy in the 1.2-8 um spectral range and broad-band photometry in the optical and Near IR (NIR). The main instrument of the ARIEL Payload is the IR Spectrometer (AIRS) providing low-resolution spectroscopy in two IR channels: Channel 0 (CH0) for the 1.95-3.90 um band and Channel 1 (CH1) for the 3.90-7.80 um range. It is located at the intermediate focal plane of the telescope and common optical system and it hosts two IR sensors and two cold front-end electronics (CFEE) for detectors readout, a well defined process calibrated for the selected target brightness and driven by the Payload's Instrument Control Unit (ICU).Comment: Experimental Astronomy, Special Issue on ARIEL, (2017

    Design of the instrument and telescope control units integrated subsystem of the ESA-ARIEL payload

    Get PDF
    The Atmospheric Remote-sensing Infrared Exoplanets Large-survey (ARIEL)1 Mission has been recently selected by ESA as the fourth medium-class Mission (M4) in the framework of the Cosmic Vision Program. The goal of ARIEL is to investigate, thanks to VIS photometry and IR spectroscopy, the atmospheres of several hundreds of planets orbiting nearby stars in order to address the fundamental questions on how planetary systems form and evolve.2 During its four-years mission, ARIEL will observe several hundreds of exoplanets ranging from Jupiter- and Neptune-size down to super-Earth and Earth-size with its 1 meter-class telescope.3 The analysis of spectra and photometric data will allow to extract the chemical fingerprints of gases and condensates in the planets atmospheres, including the elemental composition for the most favorable targets. It will also enable the study of thermal and scattering properties of the atmosphere as the planet orbits around its parent star

    Laser Interferometer Space Antenna

    Get PDF
    Following the selection of The Gravitational Universe by ESA, and the successful flight of LISA Pathfinder, the LISA Consortium now proposes a 4 year mission in response to ESA's call for missions for L3. The observatory will be based on three arms with six active laser links, between three identical spacecraft in a triangular formation separated by 2.5 million km. LISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using Gravitational Waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the infant Universe at TeV energy scales, has known sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales near the horizons of black holes, all the way to cosmological scales. The LISA mission will scan the entire sky as it follows behind the Earth in its orbit, obtaining both polarisations of the Gravitational Waves simultaneously, and will measure source parameters with astrophysically relevant sensitivity in a band from below 10−4 10^{-4}\,Hz to above 10−1 10^{-1}\,Hz.Comment: Submitted to ESA on January 13th in response to the call for missions for the L3 slot in the Cosmic Vision Programm
    corecore